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DYNAMICS OF UNDERSEA CABLES

1. INTRODUCTION

1.1 Statement of the Problem

There is a plethora of computer models which compute the shape of

cables subject to ocean current forcing. In a summary report AlbertsonI

listed 44 different models currently in use. There is very little data,

however, which can be used to compare the model outputs with experimen-

tally observed cable shapes.

The governing equations which describe the cable response to ocean

current forcing are a set of nonlinear partial differential equations.

Various investigators have simplified the equations in several ways to

facilitate their solution. In the absence of experimental data, however,

there is very little basis on which to decide the relative importance of

the various simplifications that have been made.

The object of this study is to examine several model types, intro-

duce measured ocean currents, compare the outputs with a set of carefully

made measurements of cable shape, draw conclusions concerning the valid-

ity of the models in this particular setting, and recommend improvements

in the models.

1.2 Background

Over the years there have been numerous studies of the problem of

the shape of a cable subjected to various forces. The first analytical

work was that of James Bernoulli, who in 1690 studied the equilibrium

shape of a uniform chain supported at the ends. This work resulted in
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the catenary equations. Since that time the literature has grown, as

can be seen in table 1.

Table 1. Number of Citations Listed in Recent Review Papers

Number of
Review Paper Citations Topic of Review

Davis, Fitzgerald and 101 Deep Sea Moorings
Neilligan (1963)

3

Casarella and Parsons 81 Cable Motion Under
(1970) 4  Hydrodynamic Loading

Albertson (1974)1 107 Submerged Moorings

King (1980) 5  68 Vortex Shedding

Given the size of the body of literature on the topic, one would

think that the problem would now be solved. This is not the case. The

characterization of the drag forces is an active area of research. Also

it is not yet possible to solve the complete equations of motion of

complex cable structures in a reasonable period of time on existing com-

puters. In order to proceed with the solution to the problem, experimen-

tal data must be obtained which can be used to test cable models. The

data set would permit testing of drag force models and would allow quan-

titative assessment of the effects of candidate simplifications of the

complete equations of motion which would facilitate implementation of the

models on computers. The few measurements made to date do not provide

adequate data for comparison of theory with observation. It turns out

that it is very difficult to make the required measurements, because what

is needed is an accurate physical description of the cable system, cur-

rents measured in sufficient detail to define flow variations along the
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length of the cable, and measurement of cable position at a sufficient

number of points to describe cable shape. Some work has been done;

measurements on a laboratory scale have been made, 6'7 and work has also

been reported on limited measurements made at sea.89

A comprehensive review of research investigations on the prediction

of motion of cable systems under hydrodynamic forcing was performed by

Casarella and Parsons. 4They trace the development from World War I era

attempts to develop analytical models for the two-dimensional, steady-

state cable problem, motivated by the requirement for predicting the height

of barrage balloons in varying wind conditions. Two-dimensional dynamic

models are of more recent origin, coming after World War II. Some of

this work was stimulated by the requirement for modeling the two-

dimensional dynamic notion of ships during the nuclear testing program

in the Pacific. The three-.dimensional problem began to be addressed in

the 19601s, motivated by the need for models to describe the motion of

towed bodies and tow cables, and the need to describe mooring motions

for both surface platforms and oceanographic measurement moorings.

Particularly important work in this period was that of Wilson 10and

Reid. 11

The widespread use of large computers for numerical solution of the

cable equations led to major steps forward in the 19701s. Bedenbender 12

solved the three-dimensional static configuration problem using a

predictor-corrector method, then solving the two point boundary value

problem by a shooting technique. DeZoysa 13improved the method of

solution to give convergent solutions in certain problem cases when the

initial guess at the solution was poor. Skop and O'Hara 14and Skop and
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Mark developed a three-dimensional cable model for predicting equilib-

rium configurations of moored cable systems using the method of

imaginary reactions.

The three-dimensional dynamic cable problem has been solved by

Patton 9 by considering a lumped mass system. In this formulation of the

problem the forces that operate over the entire cable are considered to

operate at discrete points along the cable. Essentially the model is

one in which the array is considered to be a set of discrete masses

connected by massless springs. A two-dimensional problem of this type

was solved earlier by Paquette and Henderson on an analog computer.
16

Finite element formulations of the cable dynamics problem have been

given by Morgan
17 and Webster.

18

In addition to the development of increasingly more complex models,

simplified models for the purpose of engineering calculations were

developed. 19 ,20 These simplifications provided quick calculations of

parameters of importance to the design of certain simple moorings.

1.3 Current Status of the Problem

The cable equations must be solved numerically, because analytic

solutions, except in the simplest situations, cannot be obtained. It is

possible to obtain solutions using existing numerical models for the

equilibrium configuration of complex cable structures such as multilegged

moorings. The moorings may incorporate buoys and other discrete discon-

tinuities. Variations in the magnitude and direction of ocean current

as a function of position on the structure can be accommodated. Cables

with nonuniform material properties and elastic cables can be modeled.

In short, static models can provide calculations for almost the whole
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range of situations of practical interest. What is not known is how

closely the models represent physical systems. There is also some

uncertainty about input parameters such as normal and tangential drag

F coefficients and strumming parameter.

A similar situation exists with respect to dynamic models. The

models promise to deliver the answers to almost any practical problem.

There is an additional complication, however: The solutions generally

require substantially greater amounts of computer time.

Albertson conducted a survey of existing cable models and concluded,

"Precise validation data for the steady-state and dynamic programs

are needed to quantify the errors associated with the various

techniques and to help select correct hydrodynamic loading cri-

teria and added mass and damping coefficients used in the computer

programs."1 82

While some progress has been reported, 8,1the preceding statement is

still generally true. This study will attempt to fill this critical

gap by reporting the results of measurements of cable position as a

function of time for a large cable system. Ocean currents measured at

two locations near the cable are input into several models and the

model results are compared to the observed cable shape.



2. CABLE EQUATIONS

2.1 Dynamic Equations

The equations governing the motion of a cable system are derived

from Newton's second law:

F = ma(1)

where the forces to be considered are gravity, tension, damping, viscous

drag and hydrodynamic inertia. Mathematical formulations of these forces
11

are given in Reid. The general formulation of the equations of motion

requires consideration of the elastic properties of the cable. In order

to do this a Lagrangian coordinate, So , is generally employed. So is

the coordinate on the original unstretched cable and S is the correspond-

ing coordinate on the stretched cable.

Keller2 2 showed that Lagrangian coordinates lead to a particularly

simple form for the equations of motion for a string. In this formula-

tion it was not necessary to make the assumption that the motions were

small. Keller, however, went on to assume a particular form of the

stress/strain relationship which does not generally hold.

Cristescu,23 ,24 using Lagrangian coordinates, wrote the equations

of motion for an elastic string in the following form:

o
2o 2L + (1 + C) X= 0 (2)

0 0 at

6
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S+ ( + 2 .(l E) = 0 (3)

( !L + (I + C) Z = 0 (4)
0 0 at

where S is the Lagrangian coordinate along the unstretched cable; t is

time; T is tensile stress: p0 mass per unit length of cable, it is

related to the mass per unit length of the stretched cable by p0  (l+E)P;

X, Y, Z, the components of external forces acting on the cable; c is

strain:

dS -dS/ \2 ' 2  a 2

02

E dS0 I-) l (5)

where S is the stretched curvilinear coordinate. A very readable deri-

vation of the equations of motion in this form is available in Berteaux. 20

A constitutive law relating stress and strain is also required. Cristescu

used the relation T = Ec in his numerical examples, where T is stress and

E is the dynamic elastic modulus. It is assumed that the cable is per-

fectly flexible; that is, tension is always in the direction of the

tangent to the cable. The effects of drag, hydrodynamic mass, and other

outside forces are lumped in the force components X, Y, and Z.

The equations are hyperbolic partial differential equations.

Cristescu solved them using the method of characteristics. He identified

two characteristic lines, the first for transverse waves

*C 1 (6)
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the second for longitudinal waves

In general, both types of waves are always present. The equations may

now be integrated using standard numerical techniques such as those

given in Forsythe and Wasow, 25 Detailed derivation of the character-

istic forms of the equation of motion are given in Reid. 
11

Cristescu performed a direct numerical integration of the equations

of motion using the methods outlined above. However, the cases con-

sidered were particularly simple, They dealt with a homogeneous string

with no external force components (X a Y= Z a 0). Unfortunately, even

on fast computers direct integration schemes are executed very slowly. 26

This is because the wave speeds, particularly for longitudinal waves,

are high (3300 in/sec for steel cable). 11 Consequently, the step size

(length and time) must be small. One method to reduce the execution

time is to use a lumped-mass model. 9  In this type of model all of the

essential dynamics are considered to be acting at a small number of

discrete points. The lumped mass points are then considered to be con-

nected by massless springs. The computer running time for this type of

model is substantially reduced, but still large. On a Univac 1108

computation time is about equal to simulation time. The price one pays

for this reduction is that the small scale behavior is lost. For most

undersea cable problems this is not a serious deficiency.

Patton 9 rewrote the Cristescu equations for a lumped mass model,

assuming that a uniform cable of unstretched length L can be broken up
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into n equal length segments, The length of a segment is AL - L/n. All

the forces acting on a segment are assumed to be concentrated at the

midpoint of the segment:

d2x
QAL X AL(IE) + T - T (8)

2

P0° AL d n .XYn Xplc +Tyn -x ,n-1(9

dy

p L , Z AL(1 ) * T - T (9)

d2z
do t n LI€ z,n Tz,n-l (10)

where the symbols have the same meaning as before; the subscript n refers

to the nth segment; and the subscripts x,y,z refer to the component of

tension resolved along the corresponding coordinate axis. An effective

spring constant is given by

id 2 EK -4 - (11)

where the symbols have the same meaning as before. The tension in the
th

n segment is then calculated from

Tn  . K (xn,1 -xn
) 2 CYn yn) 2 + (zn 1  z n) 2 L

(12)

th
The quantity under the radical is the stretched length of the n segment.

The forces Xn , Yn Zn are the sums of the force components in the

x, y, z directions. They include the forces of hydrodynaric inertia,
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viscous drag, gravity and damping. They are calculated according to the

formulae presented in sections 2.3 and 2.5.

A more complete theory would allow for variations in the material

properties such as

1. creep under constant load

2. time dependent relaxation of elastic strain under no load

3. hysteresis under cyclic loading

4. hydrostatic pressure effects on material properties

S. cable bending stiffness.

These properties are generally ignored in cable behavior models either

because the effects are expected to be small or because the data base

on material properties is too small to justify inclusion. 11

In any specific problem one or more of the properties in the pre-

ceding list may have to be included. If that turns out to be the case

then additional experimental data on the material properties will have

to be determined. In the experimental situation to be discussed later

in this paper only hydrostatic pressure effects turn out to be important.

The tensions are such a small percentage of the ultimate strength that

the behavior is essentially that of a linear spring, the cable is so

long that it can safely be considered to be limp, and the values of

buoyancy at high values of pressure are measured experimentally.

2.2 Steady State Equations

The differential equations governing the equilibrium configuration

of an undersea cable have been derived by Patton, 9Bedenbender. 
12

Daubin, 27DeZoysa, 13Berteaux 20and others, Aside from differences in

notation and convention in the measurement of angles all of the resulting
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systems of equations are identical. The notation adopted in this
13

section is that of DeZoysa. The assumptions inherent in the deri-

vation are as follows:

1. The forces are time independent.

2. Cable ends are under constant tension.

3. Cable is completely flexible and inextensible.

The local coordinate system for an element of cable length ds is

shown in figure 1. In this figure, is is a unit vector tangent to the

cable, i is a unit vector normal to the cable and in the vertical plane,

i is normal to is and i and in the horizontal plane.

The equations are derived by resolving the components of force along

the is, i , i8 directions and then neglecting terms which are products of

differential quantities. The resulting set of equations is

dT
ds- w sin * - Rs  (13)

T cos d - R (14)

d s
0

T d w cos Re (15)

d

dx cos 8 cos * (16)

0

dY sin 0 cos (17)
ds

dz sin (18)

sin*
0
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F.o s s f

Figure 1. Local Coordinate System for an Element of Cable
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where

x,y,z are Cartesian coordinates,

T is tension in the cable,

s is arc length along the cable,

w is weight per unit length of cable in the fluid medium,

9 is the angle between the positive x axis and the plane containing

the element ds,

is the angle between ds and the x-z plane,

RsRR 0  are hydrodynamic forces along cable coordinates.

Equations 13 through 18 constitute the steady state cable equations.

These are six equations in which the independent variable is so , and the

dependent variables are x,y,z,T,,. The equations can be numerically

integrated and the problem then becomes one of solving a two-point

boundary value problem. A "shooting method" has been employed by

Bedenbender12 and DeZoysa, 13 The integration method used was a fourth

order Runge-Kutta.

It is also possible to include the elastic properties of the cable.

In this case the equations are written in terms of the stretched length,

ds:

ds = ds (l+E) (19)

where ds0 refers to the unstretched length and 
c is the strain. Patton

9

and Radochia 28 provide computer programs for integrating the equations

for the elastic cable case.

Generally, however, the equations are not solved directly. The

problem is that the equations are nonlinear. The method of solution
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employed in each of the steady state models considered in this study

depends on a variant of the method of imaginary reactions. This is a

method borrowed from structural analysis. 14,15,29 In this method posi-

tions of points on the array are found by the rules of statics without

recourse to solving the nonlinear force balance equations of the system.

A lumped parameter representation of the forces involved is used. One

calculates the sum of the forces and an assumed or imaginary reaction

at an anchor. An equilibrium configuration is calculated from the

balance of forces which will be inconsistent with some geometric con-

straint such as the known anchor separation in a two anchor system. The

vector difference between the solution from the calculated position and

the known position is used to correct the imaginary reaction, and the

process is repeated until the error is less than a specified amount. A

straightforward exposition on this topic can be found in Berteaux.
2 0

2.3 Drag Forces
I.

There is considerable uncertainty as to the form of the forcing

functions that drive the system. Prior to the mid 1950's most cable

analyses used a form of the normal component of drag force given by

D = CD 7 PdV2 sin c (20)

where D is drag force per unit length of cable, CD is a drag coefficient,

p is the mass density of the fluid, V is the speed of the current, d is

the diameter of the cable, and 0 is the angle between the tangent to the

cable and the current vector. Tangential drag was considered small and

nearly constant.
4
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More recently, however, this simple drag model has been found in-

adequate, particularly with respect to tangential drag. Even though the

values of the tangential drag force are two orders of magnitude smaller

than the normal drag force, in many cable problems, it can be important. 10
30

A commonly used force model was formulated by Eames. The normal com-

ponent of force per unit length of cable is given by,

pdC D 2pdCD2 V2 {(l-u) sin 01sin 01 + p sin 0} (21)
Fn - 2

The tangential component of force per unit length of cable is given by

F PdC D V 2 Iv cos 0 + v cos 01sin fl} (22)

F n is normal component of force,

F t is tangential component of force,

p is density of fluid,

CD is drag coefficient,

0 is angle between cable tangent and flow direction,

d is diameter of cable,

.is friction coefficient
both range from 0.025 to 0.05.

v is form drag coefficient3

Wilson10 summarized a large number of drag coefficient measurements

as a function of Reynolds number. From his data we get the commonly used

values of 0.9 to 1.2 for smooth cables and 1.4 for rough cables in the

Reynolds number range commonly found in the sea. There is considerable

j!
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scatter in the data, however, and any particular cable is likely to vary

from the norm. For example, Kretschmer, Edgerton, and Albertson3 1 per-

formed wind tunnel tests on a jacketed cable 1.8 cm (0.705 in.) in

diameter and obtained drag coefficient values of 1.55 for the Reynolds

number range commonly experienced in the ocean. This is somewhat higher

than the results for smooth rigid cylinders.

The Reynolds number of the flow is given by

R = V pVd (23)
e V

where

R is Reynolds number
e

v is kinematic viscosity

U is dynamic viscosity

d is diameter of the cable

V is velocity of flow

p is seawater density,

Typical values for the parameters applicable to the experimental data

that will be presented later are: V at 4*C = 0.016 gm/cm sec, 3 2 d = 4 cm,

3V = 2 to 10 cm/sec, and p = 1.025 gm/cm . Substituting these values in

equation (23) gives a Reynolds number range of 0.5 x 103 < Re < 2.6 x 10

The drag force equation used in the Griffin model and the Patton

model was that given by equation (20) with the value of CD calculated as

follows for the normal component of drag force:

F[R- 200
C D  1.2 e 8000 J 200 < Re < 25,000 (24)Df 500(4
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FR e-2500]cD  0. I e I S0<R
C =0.9 e 43,000 2500 R < 15,000 (25)

CD = 1.2 15,000 < Re < 200,000 (26)

The tangential component of drag was calculated from

FT 1  C d V2 Cosflcospl , (27)FT  = DT o

The expression for the tangential drag coefficient used is based

on a study by Wilcox:
3 3

CDT = 0.8 (RT) -0.77 < RT < 102 (28)

DTeT -. 2 1 R 1= 0.2226

CDT = 0.0635 (ReT) 10 < ReT < 10 (29)

where ReT is the Reynolds number calculated for the tangential component

of the flow velocity.

2.4 Strum Amplified Drag Coefficient

There is a further complication to the drag coefficient issue. It

is well known that cables in a moving fluid will experience flow induced

21
strumming vibrations. If the strumming frequency approaches the

natural frequency of the cable then resonance can occur. The result

of this is a greatly increased drag. This idea is used to explain why

the observed cable displacements are often much larger than the models

predict. Skop and Rosenthal34 have introduced a strum amplified drag

coefficient in the DESADE static model to bring the calculated cable

L,
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displacements into better agreement with observations. They give a

formula for the strum amplified drag coefficient, CDA' for horizontal

cables:

CDA = 1.69 Rl.09

n
= 1 +~ 4.61)2.16 (30)

CDO ( +46

where CDO is the drag coefficient for a nonstrumming cylinder and Rn is

the Reynolds number for the flow based on the component of current nor-

mal to the cable axis;

Vd

R = n (31)
n V

where Vn is the normal component of flow and v is the kinematic viscosity

of the fluid,

The strumming frequency is determined by

S V

= nd (32)

d[

where S is the Strouhal number, V is the velocity component of the
n n

current normal to the cable, and d is the cable diameter. For Reynolds

numbers between 103 and 104 the Strouhal number is nearly constant

"0.21. 5

The data base on which to decide a priori whether a cable will strum

36or not is very skimpy. Kennedy and Vandiver summarize the results of

four experiments which attempted to measure strumming effects. All of
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the experiments suffer from one defect or another, but they were able

to draw the following conclusions;

1. Excitation process seems to be a narrowband random process

centered around the Strouhal frequency.

2. Many modes of cable oscillation are excited - as many as 50

or 100.

3. Resonant lock-on of cable natural frequency with vortex

shedding frequency was observed only rarely.

4. There appears to be a self limiting mechanism for the amplitude

response which does not seem to be affected by cable length,

virtual mass, damping, number of modes excited, or flow speed.

S. The amplitude of the nonresonant response was about one quarter

of a cable diameter,

The literature on vortex induced oscillations is large and there

are two excellent review articles by King5 and Sarpkaya. There is a

great deal of controversy in the field and different arguments can be

brought to bear to explain the results quoted above. Aside from the

work of Skop and Rosenthal 34(it will be shown later that equation (30)

leads to unrealistically high values of the drag coefficient when

applied to the experimental data) there is little help for the modeler

who is interested in modeling the large scale behavior of cable systems.

The simplest way to account for strumming phenomena is to adjust

the drag coefficient, or equivalently, increase the effective cable

diameter in the drag force equations. Dale and McCandless suggest a

drag coefficient increase of 38 percent based on experimental data with

short cables in a tow tank. 38Conclusion 5 in the preceding list taken
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from Kennedy and Vadvr suggests that an increase of effective cable

diameter of 25 percent would be appropriate. In the results that follow

several drag coefficients will be employed as will an increased effective

cable diameter.

2.5 Added Mass

If a cable immersed in a fluid is accelerated, the force required

is larger than the force to more just the cable. This is because a part

of the fluid must also be moved around the cable.. An expression for the

force per unit length of cable is

F =(m +m) dv (33)a a dt

where m a is the added mass. The quantity (m + m a) is referred to as the

virtual mass. The added mass per unit length of cable can be calculated

from

ma C 7 d2  (34)

where C Mis the added mass coefficient, p is the density of the fluid,

and d is the cable diameter. C mcan be calculated from potential theory

for nonrotating flow of ideal fluids. 39The value of C m calculated for

a sphere is 0.5 and for a cylinder is 1.0. Patton 40 ,alculated added

mass coefficients for a variety of shapes.

In practical problems, however, we are likely to violate the assump-

tions under which C m is calculated. For these problems the added mass

should be measured experimentally. Ramberg and Griffin 41provide a

method for measurement of virtual mass by measuring the ratio of
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resonant frequency in air to resonant frequency in water. Virtual mass

in water is then calculated from

Nwater = f) Mair

where fa is resonant frequency in air and fw is resonant frequency in

water. Pattison, Rispin, and Tsai4 2 provide a collection of measured

values of virtual mass.

There is some evidence that there is a frequency dependence to the

added mass. Patton,9 citing experimental results of Miller4 3 and Miller
44

and Hagist, used the following expression:

m = 1.0 - 1.62 X 10-6 _ d2 p (36)

where w is the frequency, d is the cable diameter, and v is the kinematic

viscosity. It is seen that the quantity outside the parentheses is just

the added mass of a circular cylinder of unit length. There is also

45evidence in experimental results reported by Ramberg and Griffin that

there is no frequency dependence to added mass. The issue is presently

unresolved. This study will use the Patton expression. The questions

that need to be addressed in order to resolve this issue are discussed

by Sarpkaya.
3 7



3. PESCRIPTION OF EXPERIMENT

3.1 OMAT Background

The data reported in this study were obtained as a subset of meas-

urements from a larger experiment. The overall experiment, the Ocean

Measurements and Array Technology (OMAT) program, was directed toward

system-oriented measurements relative to large aperture acoustic systems.

Thus the primary objective of the program was to provide a highly flex-

ible, large aperture acoustic array that could be deployed, recovered,

and reconfigured together with associated processing and real-time analy-

sis equipment so that a variety of array/system concepts could be tested

using essentially the same hardware, The system was deployed three times

in a series of experiments at sea that were conducted during the sumers

of 1977, 1978, and 1979. The portion of the overall experiment that will

be discussed here is the study of the motion of the array cable in the

ocean currents.

The general configuration of the experiment is shown in figure 2.

The water depth was 5.5 km. The horizontal span was 6 km long and

buoyed to a nominal height above the sea floor of 2.7 km. Within a few

hours of the beginning of the experiment, an electrical failure developed

in approximately the last one third of the cable so that the only use-

able data were from the eight position sensors closest to the umbilical.

The physical description of the cable system is given in table 2.

The measurement site was in the southern Sohm abyssal plain region

near 32° N 570 W. The site was chosen initially because it was believed

to be quite flat bathymetrically and in an oceanographically quiet

22
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Figure 2. Experiment Configuration
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portion of the North Atlantic basin. A bathymetric survey was conducted

in the area and a number of small hills were seen to poke out above the

generally flat surroundings. Figure 3 shows the results of the site

survey and the locations of the anchors and the current meter arrays.

Table 2. Physical Characteristics of the OMAT Cable System

Cable Buoyancy in
Component Diameter Length Sea Water Spring Constant

Umbilical 4.953 cm 9146 m -2,115 N/m 1.0196 X 107 N/m

Active S.874 cm 3088 m 4.377 N/m 2.5106 X 106 N/m
Riser

Horizontal 5.239 cm 5985 m 0.3647 N/m 2.5106 X 106 N/m
Span

Inactive 8.6 cm 3088 m 0.4377 N/m 2.3342 X 106 N/m
Riser

Tag Line 4,128 cm 9146 m 0.0 N/m S.712S X 106 N/m

A profile measurement was made of temperature, salinity, and sound

speed as a function of depth. Density was calculated from the profile

measurements and from these data the Brunt-Viis~li frequency was calculated.

The profiles of salinity, temperature, sound speed and Brunt-Viisili fre-

quency are given in figure 4.

3.2 Cable Shape Measurements

The shape of the cable was measured acoustically. The cable shape

measurement system consisted of a pinger on the cable, 13 position sen-

sors spaced along the cable, and three transponders located broadside to

the cable. Figure 5 shows the arrangement of the components of the cable

shape measurement system.



25

I6w 40 .0 2o w iw

40

U-

20'w

10! -id

. .... I I .. .. . . . . i .

igW u 40 20' 20o th Si'W

Figure 3. Bathyntetry off the Site

,I



26

0

o 0

TN+
- I

>0 w
w

zr w

0 0 El

LEl

0 0 In

0 0 *Jton

0 -: :6



27

-YV

FINAL OMAT ARRAYCONFIGURATION

6 (TO SCALE)

5-
TRANSPONDER

FIELD
4 T1  T2  3

POSITION
SENSORS

2 -x 2 .7 9 0 M 
1 I G

BOTTOM

I 2 3 4 5 6 7 8 9 10
X(KM)

Figure 5. Configuration of Acoustic Cable Shape Measurement System



28

Table 3 lists the locations of the position sensors relative to the

end of the cable.

Table 3. Location of Position Sensors on the Cable

Sensor Distance from
Number End (m) Remarks

1 24.06

2 1082.75

3 1428.25

4 1913.75

S 2035,75

6 2593.25

7 2930.25

8 30S2.75

9 3389.75

10 3943.25

11 4069.25

12 4900.25

13 5958.36 colocated with command pinger,
tensiometer and pressure
sensor.

The method of cable shape measurement was developed by Callahan.
46

Since his report is unpublished, the features of the technique required

to understand the data are summarized here.

The measurement process was initiated on board ship by sending a

signal that caused the pinger on the cable to transmit an 11 kHz pulse.

This pulse was received at each of three transponders located off to the
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side of the cable. The transponders then responded by sending a 9.5,

10.0, or 10.5 kliz pulse, depending on whether the responding transponder

was T1V T or T A signal sequence was then received at each of the

position sensors on the cable, All of the received signals were sent

via an umbilical cable to a ship nearby where they were stored in a time

of arrival matrix for subsequent processing. All of the times stored

were relative to the initiating signal sent from the ship.

Acoustic travel time was then converted to slant range using sound

speed data measured just prior to the start of the experiment. The sound

velocity profile was approximated as piecewise linear. The velocity in

layer n is given by

v(z) = a + bn (z - z n) z < z < z (37)(37)n n) n n n+l (7

The time for a vertically propagating ray to travel from depth d1 to d2

is

dz

T(d,d 2) f z (38)

d1

The average sound speed between depth d1 and d2 then is

Id1 - d2 1
vd(dl,d 2) T(dlad 2) (39)

for direct path transmission and

Id1 + d21
vs(d1 ,d2) = T(O,d1 ) + T(d2 0) (40)
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for surface reflected paths, Slant range is then calculated by multiply-

ing the average sound speed for the appropriate path by the observed

acoustic tra-el time. This development assumes straight line ray paths;

the error caused by this assumption will be discussed in section 4.2.

The pinger depth was determined for each ping by measuring the round trip

travel time for the surface reflected ray and converting to depth. The

depth of each position sensor R was then calculated for each ping from

the known pinger depth T, the direct path length D, and the bounce path

length S, according to the relation

2 _2
R = (S2  D )/4T (41)

The geometry for depth determination is shown in figure 6. Equation (41)

is derived using figure 6 by application of the law of cosines:

D2  = a2 + b - 2ab cos . (42)

Then, drawing the bisector of 6 gives

COS R (43)

os2 a

The half angle formula gives

1 + cos 0 R (44)
2 a

Solve for cos 0 and substitute in equation (42). From the properties

of similar triangles
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b T
a (

Making this final substitution and rearranging gives equation (41).

With the depths of all the elements established, it was then pos-

sible to project the geometry onto the horizontal plane and calculate

the remaining coordinates of each of the sensors. Subsequent calculation

would have been straightforward if the transponder positions were known

exactly; however, a survey of the transponders conducted from a surface

ship shortly after they were installed was not sufficiently accurate.

Table 4 provides a comparison of the transponder coordinates determined

by survey and a more accurate determination done later by averaging

over many sets of cable shape determinations with unknown transponder

locations.

Table 4. Transponder Coordinates (km)

T T T1 2 3

(xlYlz 1) (x2,y 2 ,z2) (x3 ,y3 ,z3)

Survey 0.800,-5.355, 3,365,-5.881, 8.200,-5.300,
0.082 0.082 0.082

Post 0,264,-5.354, 4.080,-5.863, 8.522,-S.319,

0.082 0.082 0.082

Operation

Calculations

The position of each position sensor was found in a coordinate sys-

tem that had its origin at a transponder and its y axis passing directly

below the pinger, as shown in figure 7, The result of this step was
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location of all the position sensors in each of three coordinate systems

which differ in both origin and orientation, as can be seen in figure 8.

The coordinate systems were then rotated and translated by an amount

such that the resulting position sensor locations most nearly agreed

in a least square error sense,

At this point, what we have is a self-consistent estimate of the

position sensor locations, but what we really want is to determine the

position sensor locations in a system relative to the two array cable

anchors. In order to do this a further fit of the transponder positions

was made to the positions obtained from the survey, as this is the only

connection between the transponder positions and the array cable anchor

Then, one last rotation and translation is performed to get the

final position in the anchor coordinate system,

3.3 Current Meter Measurements

Ocean current data were obtained from two vertical current meter

arrays. The two c-rays were separated horizontally by 4 km. The

location of the measurements was the southern Sohm Abyssal Plain. The

array positions relative to the local bathymetry are shown in figure 3.

The two arrays were identical, Each array consisted of three Aanderaa

RCM 5 current meters. The configuration of the current meter arrays is

shown in figure 9, The current meters were epoxy-coated to avoid the

compass problem that the older nickel-.coated Aanderaa instruments experi-

enced when subjected to high pressure. 47The instrument heights off the

bottom were 646 m, 921 m, and 1S30 m. The arrays were designated EA 1

and EA 2 and individual meters on an array were indicated by the suffix
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TOP, MID, or BOT; so, for example, the meter at a height 
off the bottom

of 1530 m on EA I would be designated EAITOP. The sample rate was 5 min.

In addition to current speed and direction, each current meter also

measured temperature and pressure. The current meter sensor character-

istics provided by the manufacturer are given in table 5.

Table S. Sensor Characteristics of Aanderaa Current Meter

Range Resolution Accuracy

Speed 0 to 125 cm/sec 0,1 cm/sec 0.5 cm/sec

Direction 0 to 3600 0,03o 5"

Temperature -2 to 200C 0,02-C 0.10C

Pressure 0 to 562 kg/cm2 0.549 kg/cm 2 5.62 kg/cm 2



4. RESULTS

4.1 Measured Cable Shape

A scatter diagram of the x/y coordinates of the position sensors

for the entire experiment is shown in figure 10. Inspection of the

figure shows that the scatter is not symmetrical about sumed anchor

baseline. This is probably due to an error during the survey of the

anchor locations. Other acoustic sensors on the cable were used to

determine the bearing to a distant sound source. That data indicated

an error in the anchor baseline of a degree or two. In order to correct

for this, a least squares regression line was calculated for the data.

The slope of the regression line was 1.50. The shape data has been

corrected by this amount.

From figure 10 one can see that the maximum excursion of the array

in the y direction was ±100 m, while the maximum excursion in the x dir-

ection was ±25 m.

In order to obtain an intuitive idea of the processes taking place,

an average transverse component of the motion of the horizontal span was

formed. The average was plotted as a time series in figure II. The

average was formed from the y component of position of the four position

sensors near the middle of the span. The data are not taken at uniformly

spaced times, so to get a curve for comparison purposes a spline curve

was fit to the data.4 8 The interesting feature of this plot is that the

oscillations were about ±100 m with a periodicity of about 12 hr. The

excursions were larger toward the end of the time series corresponding

to the time that the currents swung around more nearly broadside to the

38
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cable. Times on the plots are given in Julian date ( a table for con-

version of Julian data to calender date is given in appendix A).

Similar averages were formed for the x and z components. These

49
data were further analyzed using a maximum entropy technique. This

technique is particularly applicable to spectral estimation from short

records. It avoids many of the windowing problems that occur when deal-

ing with a finite data set. It is also useful for dealing with records

that have missing or bad points. What the technique does is to create

an autocorrelation function which is extended beyond the normal limit

of lag values using a predictive filter. The power spectrum is then cal-

culated from the autocorrelation with much reduced influence of end

effects caused by the short initialtime series. The spectra that result

from this analysis are shown in figure 12. The peak in the x and y com-

ponent occurs in the bin centered around 12.2 hr period. There is only

a small peak in the z component motion.

There were three pressure sensors included along the cable. The

sensor designated Dl was colocated with the command pinger. Sensors D2

and D3 were near the middle of the cable. The sensors D2 and D3 were

observed to drift considerably during pressure testing. The problem was

detected too late to change the sensors before the system was deployed.

They cannot be considered reliable. Sensor Dl, however, did not exhibit

the same drift characteristics. Its output is considered reliable.

The output from each pressure sensor was converted to depth and then

plotted as height above the sea floor. The resulting plot is shown in

figure 13,
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The height measured by sensor Dl was in agreement with that cal-

culated for the command pinger to within the resolution of the depth

measurement. The resolUtion was 30 m.

There is a large depth excursion beginning on Julian day 211.

During this tine the umbilical cable becamne fouled in the riser. None

of the data from this period was used in this analysis.

The cable shape observations chosen for analysis are shown in

figures 14 to 19. The observations are broken dow-n into two periods.

The first period, designated run 1, covers the period 07101 to 1311 on

day 20S. During this time the cable moved from a southerly position to

a northerly position. The second period, designated rum 2, covers the

time from 1343 to 1833 of day 205. During this time the cable moved

from a northerly position to a southerly position.

4.2 Sources of Error in Cable Shape Measurement

The position sensors did not always receive signals from all possi-

ble paths and, in addition, under conditions of low -ignal-to-noise ratio,

some sensors did not immediately make a detection. Missing pings were

detected by sorting arrivals by ray paths, but the second error, the

delayed detection, was more subtle and data flawed by this error was

sometimes included for analysis. In order to find this flawed data, a

check of the calculated straight lime distance between adjacent sensors

was performed. If the distance between the sensors calculated from the

data was greater than the known distance along the stretched cable, then

one of the two points was bad. The bad one was determined by performing

a similar check using combinations of adjacent sensors.
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Travel time was converted to distance under the assumption that the

acoustic rays travel in straight lines, It is known that sound in the

presence of a sound velocity gradient will travel along a curved path

which minimizes the travel time in accordance with Fermat's principal.

In order to examine the magnitude of the error from this assumption, an

experiment was set up using the Generic Sonar model. The geometry of

the experiment is shown in figure 20, This geometry is representative

of the geometry of the ray paths between the acoustic source on the array

and one of the reference transponders.

Eigenrays connecting the source and receiver were calculated using

the Generic Sonar Model. One of the model outputs was travel time along

a ray. The mean ,tnd speed was calculated by dividing the vertical dis-

tance between the source depth and receiver depth by the travel time for

a vertical ray.

The straight line distance for the direct path (C) is given by

C2  (3904.7)2 + (5484 - 3139)2 (46)

C = 4554.7 m.

Travel time T = 4554.7/1534.59 = 2.9680 sec,
c

Travel time following a curved ray = 2,9666 sec.

In this case the error due to the assumption that rays are straight lines

is 1.4 msec. This corresponds to a slant range distance error of about

2 m.
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The straight line distance for the surface reflected path (a + b) is

determined using the properties of similar triangles to obtain simultan-

eous equations:

390 4 - x x (47)
3139 5484

3139 5484b (48)a b

2 2 2(5484) +x = b (49)

Solving this set of equations yields;

x = 2482.8 m

b = 6020.0 m

a = 3445.8 m

Travel time T = 9465.8/151S.65 = 6.2454 sec.

(a~b)

Travel time following a curved ray = 6.2451 sec.

In this case the error due to the assumption that the ray travels in a

straight line is 0.3 msec. This corresponds to a slant range distance

error of about 0.5 m. The smallness of the error in this case is prob-

ably fortuitous since the accuracy of the eigenray calculation is about

1 msec.

A further source of error in the cable shape measurement comes from

the fact that the bottom mounted reference transponders are actually

buoyed up from the sea floor to a height of 83 m. The mooring is then

subject to action by ocean currents. The result of a mooring deflection
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study is shown in figure 21. Under the conditions experienced during

the experiment the calculated transponder positions would not be expected

to vary by more than 1 or 2 m,

A possible source of error comes from the fact that a single sound

speed profile was used for conversion of travel time to distance. Sur-

face heating, mixing processes, water mass advection or internal waves

could alter the sound speed profile. A check on errors from this source

was performed by adding the round trip travel time from the pinger to

the surface to the round trip travel time from the pinger to the bottom.

Since the distance from the surface to the bottom was fixed, any important

differences in mean sound speed would be reflected in the travel time.

The average travel time was determined on three different days and the

difference of the averages was tested for significance using student's

T test. There was no significant difference in the means at the 0.01

level. Consequently we can say that the changes in the sound speed pro-

file that may have occurred did not produce appreciable changes in the

average sound speed used in the conversion from travel time to distance.

4.3 Ocean Current Data

Time series plots of ocean current measurements are presented in

figures 22 and 23. The data were corrected for magnetic variation (180W)

and then resolved into components along axes oriented toward North and

East. The component data were then filtered with a lowpass Butterworth

filter (1 pole). The high frequency cutoff for this filter was I cycle/

hr. The data were then resampled at half hour intervals. In order to

obtain the data set presented in the figures, a further rotation was

made to a heading of 125"T, the nominal line of bearing of the line
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connecting the two cable array anchors. Here a positive parallel corn-

ponent is toward 305 0T; a positive perpendicular component is toward

0 3S T.

This same data set is plotted on a progressive vector diagram in

figures 24 and 2S. At measurement site EA 1 the currents up to 26 July

(Julian day 2107) are generally in a direction of 1160T. The currents

then swing south for a day then to the southwest. This process begins

a day later on 27 July (day 205) for the middle current meter. At

measurement site EA 2, the currents are generally the same at all three

levels in a direction of 120*T. Then on 24 July (day 210) the currents

at the two deeper meters turn toward 140 0T while the top meter continues

to show currents toward 1200. On 26 July currents at the two deeper

meters swing back toward 100*T. Not until 29 July do the two deeper

meters indicate a current swing to the south, three days later than the

similar event at station EA 1 (remember that the horizontal separation

of the two arrays is only about 4 kmn).

It is interesting to note that these data are inconsistent with the

general circulation model of the North Atlantic of Worthington. 
5 1

Worthington's model predicts westerly currents at a depth of 4000 m at

the measurement location. Owens and Hogg 5 2 reported similar anomalies

in current measurements made near a bathymetric "bump" of similar dimen-

sion to the "bumps" in the vicinity of these current measurements.

Power spectra of the current magnitude were calculated for each

meter. The spectra are shown in figures 26 and 27. All spectra have a

peak at about 0.08 cycle/hr, which corresponds to a period of 12.5 hr.
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At the latitude of the measurements the inertial period is 22.3 hr. The

period of the M2 constituent of the tide is 12.42 hr.
3 2

4.4 Static Mode~s

Two static models were investigated. The DESADE model was of the

imaginary reaction type, the GRIFFIN model solved the steady state

differential equations and used the imaginary reactions for determining

the boundary conditions.

The most widely used static model is the DESADE model developed at

the Naval Research Laboratory. 14 ,15 The model considers only the normal

component of the drag force and in its original version permitted ocean

current variations only as a function of depth. The most significant

modification of the program by other users is in the provision for

complicated current fields which vary in the horizontal as well as in
the ertcal53'54

the vertical. 5 4 The principal limitations of the model from the

point of view of the present study are that the cable structure cannot

consist of more than 22 segments and the neglect of tangential drag.

Provision has been made to introduce a strum amplified drag coefficient

34
which is a function of Reynolds number. Plane and side views of the

DESADE output for various current speeds broadside to the cable are

shown in figures 28 and 29. Listings of the data are provided in

appendix B. Additional runs were made for several values of the drag

coefficient. The maximum deflections of the cable by currents of 2.5

cm/sec are shown in table 6 for various values of the drag coefficient.

The effect of changing the drag coefficient can be dramatic, as seen

(for instance) in figure 30. This is a plot for the strum amplified

drag coefficient calculated according to Skop and Rosenthal.
3 4
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Table 6. Maximum Displacement c Cable for
Broadside Current of 2.5 cm/sec as Function

of Drag Coefficient

C D  Maximum Displacement
(m)

1.2 63

1.3 68

1.55 81

Strum Amplified 157

CD

The GRIFFIN static model used is one developed at the Naval Under-

water Systems Center. 55 2 8 This method computes the boundary conditions

by the method of imaginary reactions. The steady state differential

equations are then integrated using a fourth-order Runge-Kutta method.

This model features a Reynolds number dependent drag coefficient and

includes the effects of tangential drag. The output of this model for

several values of current is given in appendix B for comparison with

other results.

A time series of static model outputs corresponding to the times

of cable shape measurement in run 1 is given in figure 31. This plot

was generated by putting the observed currents at each time into the

GRIFFIN model and calculating the equilibrium shape of the cable. If

the cable was always close to an equilibrium condition, then this time

series would closely resemble the observed cable shapes during run 1

shown in figure 14. There are two things to note here. The first is

that all of the model displacements are smaller than the observed
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displacements. This could be corrected by using a larger drag coeffi-

cient; however, the drag coefficient which would bring the model into

agreement with observations at 0700 would not be the same as the drag

coefficient required to accomplish the same thing at 1300. The second

thing to note is that the cable observations are not in static equili-

brium with the currents. The currents from 1000 to 1300 are very small

and yet the cable continues to move to the extended position observed

at 1311. This points up the importance of the dynamics in this problem.

4.S Dynamic Model

The dynamic model used is one originally developed by Patton 9 and

subsequently modified by Griffin. 56 It is a lumped mass model where all

of the essential dynamics can be considered to be taking place at a few

positions on the cable system. These positions are connected by hypo-

thetical massless springs and damping elements., The model treats tan-

gential and normal drag, elastic properties of the material, added mass,

and damping in three dimensions.

The cable system is modeled by nine lumped mass elements as shown

in figure 32. The dynamic cable equations are integrated using a fourth-

order Runge-Kutta method with a time step of 0.1 sec. The effects of

strumming were introduced by increasing the effective cable diameter by

25 percent, This was done based on the finding of Kennedy and Vandiver36

that the strumming amplitudes experience a self-limiting amplitude re-

sponse of about 25 percent of the cable diameter.,

The dynamic response of the cable system was studied using the

dynamic model. The cable was initially assumed to be at equilibrium

with no current. At time t = 0 a step function change of current of
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15 cm/sec broadside to the array was introduced. The computed time

history of the y component of displacement for lumped mass points IV

and VI are shown in figures 33 and 34. The time history curves have

the appearance of the curve of a charging condenser. The equation

which describes a charging condenser is

-rtY Ct + (Y - a) e (50)

An equation of this form was fit to the data using a technique given by

57 -j
Howard, Griffin and Foye. The value for r was found to be 0.0111 X 10

-l
sec The reciprocal of r is the time constant of the charging con-

denser. In this case the time constant of the cable system turns out

to be about 2.5 hr.

A time series of the calculated cable shape was created to corre-

spond to the sample times of the cable shape measurements.

The model was started from a position of equilibrium with no current.

The current input into the model was determined by fitting a Fourier

series to the hourly averaged data. Then the current at each time step

was calculated from the sum of the Fourier components. Figure 35 shows

the fitted data with the original time series for the parallel and per-

pendicular components of the currents from EAITOP. This is representa-

tive of the data from the other five current meters. Each of the six

current meters was considered to be acting on that portion of the struc-

ture that was closest. No attempt was made to compensate for the fact

that the current meters were 5 km away from the array. If changes in

currents at the current measurement arrays are due to a moving distur-

bance (waves, advection of turbulence, frontal passage etc.) then there
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would be a time difference between the time of an event at the measure-

ment site and the time of the event at the cable site. When the current

field is relatively homogeneous this will not be a problem. When the

currents are not the same over the area, such as was the case on

27 July for example, then the currents measured at the current measure-

ment site will not adequately describe events at the cable site.

The dynamic model was run for the currents that were measured on

days 205 and 206. A limited analysis period was a result of the fact

that the program requires 1 hr of computer time to calculate the array

response for 1 hr of real time on the PDP 11/70 computer.

The Fourier series expansion of the current meter data is given by

f(t) A + an cos+ b sin (51)

n=1 L B A/ Bk

where

XB

XB XA f(t) dt (52)

XA

XB / 2lnt\

a XB A f(t) cos X dt (53)

XB B2Bnt

XA f(t) sin dt (54)
2 x -

..... B A ... . . .. .. ll Iln . .. ....-. .. . ". ... .
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For our case

x - X = 24 hours X 3600 sec/hrB A

= 8.64 X 10 4sec

and t is the time in seconds.

Ile have data from EA-1 and EA-2 at three depths on each array. The cur-

rent speed was introduced in the model in the manner shown as follows.

Z EA-I EA-2

(VPLr)I (VPLT) 2
(VPT), (VPT) 2

(VPLM) I VL)
(VPM) I (VPM) 2

VPB)1(vPLB)2

g .x
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Assume that

1. (VPB)1 and (VPLB)l act at element 1.

2. (VP M)I and (VPLM)l act at element 2.

3. (VPT)1 and (VPLT)L act at element 3.

4. (VP 1T) and (VPLT)I act at element 4.

5. (VPT)2 and (VPLT)2 act at element 5.

6. (VPT)2 and (VPLT)2 act at element 6,

7. (VPT 2 and (VPLT)2 act at element 7.

8. (VPB)2 and (VPLB)2 act at element 8.

The output of the dynamic model which corresponds to the cable shape

measurements of runs 1 and 2 is given in figures 36 and 37.

4.6 Sources of Error in Modeling Effort

The principal source of uncertainty in the modeling effort comes from

the fact that the current measurements were not colocated with the cable.

The current meter arrays were about 5 km from the array and were separ-

ated from each other by about 4 km. The currents at each array were

often different from one another and we must expect that currents at the

cable location would also be different. The bulk of the horizontal span

of the cable was 1 km above the highest current measurement. If there

were additional current variation with depth, the input to the model

could be seriously in error.

A further potential source of error comes from the fact that funda-

mental parameters of the array, drag coefficient and virtual mass, were
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not measured experimentally. The values of these parameters that were

used were estimated based on results for similar cables reported in the

literature., It is not known whether the cable was strumming or what the

magnitude of any strumming motions might have been. Consequently any

strumming effects introduced into the model are based on experience with

other cables, which may or may not be applicable to this specific model-

ing effort.

A check on the numerical performance of the models was performed by

introducing a test problem with a known solution. The simplest such prob-

lem is to consider the shape of a uniform, buoyant cable under conditions

of zero current. In this case the cable shape should be a catenary. The

equation of a catenary is

xZ = c cosh - (55)c

where c is the height of the directerix (here taken to be the x axis)

and is found from

S = c sinh x (56)c

for the case where the end points of the cable are at the same depth.

S is the distance along the cable from the maximum height to the end of

the cable and x is the coordinate of the end point. For the case where

the ends of the cable are not at the same height, C is determined from

2 h 7

(12= 2c sinh (57)T-c
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where h is the horizontal separation of the end points, k is the vertical

separation of the end points, and I is the length of the cable. The

geometry of these two cases is shown in figure 38.

The result for the static model agreed with the analytical solution

to within a maximum difference of 0.4 m (table 7). The result for the

case of the dynamic model was that the maximum difference was 0.2 m

(table 8).
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Table 7. Comparison of Static Model Output to Catenary for
Uniform Cable, No Current

X Z (Model) Z (Catenary) Difference

0.0 0.0 0.0 -0.0

334.4 5lS.0 515.7 -0.1

694.9 1012.9 1013.0 -0.1

1084.5 1487.0 1487.1 -0.1

1506.6 1932.1 1932.0 0.0

1964.0 2340.1 2339.9 0.2

2458.9 2701.2 2700.8 0.3

2991.3 3003.2 3002.8 0.4

3558.4 3232.9 3232.5 0.4

4152.0 3377.4 3377.0 0.4

4762.0 3426.9 3426.6 0.3

5371.3 3377.6 3377.6 0.0

5965.6 3233.4 3233.6

6254.5 3128.0 3128.3 -0.4

6535.4 3002.7 3003.1 -0.4

7068.0 2700.8 2701.1 -0.3

7562.9 2339.8 2340.2 -0.4

8020.4 1931.9 1932.3 -0.4

8442.5 1486.9 1487.3 -0.4

8832.3 1012.8 1013.1 j -0.3

9192.8 515.6 515.& -0.2
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Table 8. Comparison of Dynamic Model Output to Catenary for

Uniform Cable, No Current

X Z (Dynamic Model) Z (Catenary) Difference

1754.0 2567.0 2567.0 0.0

3253.7 2740,1 2739.9 0.2

4762.1 2798.6 2798.4 0.2 J
6270.6 2741.5 2741.3 0.2

7770.4 2569.8 2569.7 0.1



S. DISCUSSION

All of the models investigated suffer from one deficiency or another

when invoked to explain this data set. There are some problems en-

countered in this situation that are not generally found in studies of

cable deformation. For example, the length of the horizontal span (6 km)

is much longer than that in any previous investigation. During much of

the experiment the mean flow was directed along the cable axis. There

were times when there were significant shears in both the vertical and

in the horizontal current field.

It is still an open question as to whether the cables were strum-

ming or not. If the cables were strumming then the effective drag co-

efficient should be increased, an effect that would improve the agree-

ment between the models and the observations because all of the models

underestimate the cable displacement. However, when the strum amplified

34
drag coefficient proposed by Skop and Rosenthal is used (figure 30),

the model maximum displacements are larger than observed displacements

by a factor of about 2. This disc--pancy could be due to the fact that

the Skop and Rosenthal expression was derived from empirical results

obtained from the wake response of rigid cylinders. There is some

'6
indication in the work of Kennedy and Vandiver that the strumming

characteristics of rigid cylinders are different from flexible cables.

A more conservative strum amplification was used in the dynamic model

with the result that the model underestimated the observed deflections

by a factor of about 2.
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It is possible to force agreement of the model results and observa-

tion by selection of the drag coefficient which would lead to the best

fit of the data. We find, however, that no single drag coefficient is

adequate to explain all of the data..

When a time series formed from the static model results is com-

pared to observations from run 1, it is found that quantitatively there

is an initial agreement, but as time goes on the agreement with the

observations becomes less and less. Particularly after about 1000, the

observed cable deflection was to bow out on the north side of the x

axis. The static model results are that the cable remains close to the

x axis. It is interesting that the dynamic model does track the obser-

vations through this period fairly well. This illustrates the importance

of the dynamics in the cable behavior problem.

Another possible reason for the difference in results between

models and observations is related to computational methodology. The

intent of this study was to take several models as they stand and see

how well they explained the observations. A check was performed against

a problem with a known analytical solution and the agreement was good.

Even so, it is still possible that hitherto undetermined numerical prob-

lems remain in some of the models. For example, Meggit reported that

a dynamic model he was investigating turned out to be sensitive to the

initially assigned cable shape, 
8



6. CONCLUSIONS

The development of cable models has proceeded without the checks

and balances of interaction with experiment. We have shown the impor-

tance of dynamics in the prediction of cable configuration. The dynamic

model predicted the qualitative behavior of the cable through a complete

current cycle. Quantitatively, however, the dynamic model pr~edicted dis-

placements about half as large as observed.

Agreement between model results and observation can be improved by

introd-icing in some way the effects of scrumnming. One suggested way to

improve the agreement is to increase the effective cable diameter by

the strumming amplitude. This was done with the dynamic model to obtain

the result stated above. Another proposed method is to increase the

drag coefficient by a strum amplification factor w~hich is a function

of the Reynolds number. When this was done with the present data set

the model results overestimated the observed results by a factor of 2.

The modeling of strumming effects is still an open issue.

None of the model outputs investigated corresponded exactly with

the observations. There are a number of adjustable parameters in the

models that can be used to force agreement. A better approach would be

to make direct measurements of as many of these parameters; as possible

and remove these sources of uncertainties from the problem. A\ccelerom-

eters should be included in the measurements made on the C:3ble. Labor-

atory tests should be made to determine material properties, drag

coefficients, and added mass coefficients.
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The dynamic model results show that the array moves so slowly that

it never reaches the "static equilibrium" condition. It is tempting to

try to recreate the time history of array displacement by successive

calculations of the equilibrium configuration, but it is clear that this

will not work. The value in calculating the equilibrium configuration

is that it provides engineering design numbers. It cannot provide in-

sight into the behavior of a cable system subject to ocean current

forcing.

It is the low frequency components of the flow that dominate the

array motion. This is shown by the fact that the spectrum of the array

motion is dominated by a peak at the tidal frequency,
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APPENDIX A

JULIAN DATE CALENDAR

(PERPETUAL)

DAY JAN FEB MAR APR MAY JUN JULY AUG SEP OCT NOV DEC DAY
1 001 032 060 091 121 152 182 213 244 274 305 335 1
2 002 033 061 092 122 153 183 214 245 275 306 336 2
3 003 034 062 093 123 154 184 215 246 276 307 337 3
4 004 0351063 0941 124 155 1185 1216 247,277 308,338 4
5 005 036 064 095 125 156 186 217 248 278 309 339 5
6 1006 037 065 096 126 157 187 218 249 279 310 340 6
7 1007 038 066 097 127 158 188 219 250 280 311 341 7
8 008 039 067,098 128,159 189 220,251 281 312 342 ,8
9 009 040 068 099 1291160 190,221 252 282 313 3431 9
10 010 041 069 100 1301 161 191 1222 253 283 314 3441 10
11 Oil 042 070 101 131 1162 192 223 254 284 315 345 1I 1
12 10121043 071 102 132 163 193 224 255 285 316 346 12
13 013 044 072 103 133 164 194 225 256 286 317.347 13
14 014 045 073 104 134 165 195 226 257 287 3181348 14
I5 015 046 074 105 135 166 196,227 258 288 3191349, 15
16 016 0471075 1061 1361167 197 228 259 289 32013501 16
17 1017 048 076 107 1371168 198 229,260 290 321 351 117
18 018 049 077 108 1381169 199 2301261 291 322 3521 18
19 019 050 078 109 139 170 200 231 262 292 323 353 19
20 020 051 079 110 140 171 201 232 263,293 324 354 20
21 021 0521080 111 141 172 202 233 264 294 325 355 21
22 1022 053 081 112 142 173 203,234 265 295 326 356 22
23 023 054 082 113 1431174 204 235 266 296,327 357 23
24 024 055 083 114 1441175 205 236 267 297 328 358 24
25 025 056 084 115 1451176 206 237 268 298 329 359 25
26 026 0571085 116 146 177 207 238 269 299 330 360 26
27 027 058 086 117 147 178 208,239 270,300 331 361 27
28 028 059 087 118 148 179 2091240 271 301 332 362 28
29 029 088 119149 180 210 241 272 302 333 3632930 030 - 089 1201 I501181 211 242 273 303 341364 30
31 1031 1 090 - 151 -212 243 -304 -365 31

FOR LEAP YEAR ADD ONE TO DATES AFTER 28 FEBRUARY
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